Global estimates for the Hartree–Fock–Bogoliubov equations

نویسندگان

چکیده

We prove that certain Sobolev-type norms, slightly stronger than those given by energy conservation, stay bounded uniformly in time and N. This allows one to extend the local existence results of second third author globally time. The proof is based on interaction Morawetz-type estimates Strichartz (including some new end-point results) for equation {1i?t??x??y+1NVN(x?y)}?(t,x,y)=F mixed coordinates such as Lp(dt)Lq(dx)L2(dy), Lp(dt)Lq(dy)L2(dx), Lp(dt)Lq(d(x?y))L2(d(x+y)). main technical ingredient a dispersive estimate coordinates, which may be interest its own right.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

Global Estimates for Mixed Methods for Second Order Elliptic Equations

Global error estimates in L2(Q), L°°(Q), and H~S(Q), Q in R2 or R3, are derived for a mixed finite element method for the Dirichlet problem for the elliptic operator Lp = -div(a grad p + bp) + cp based on the Raviart-Thomas-Nedelec space V^ X Wh c H(div; Í2) X L2(ü). Optimal order estimates are obtained for the approximation of p and the associated velocity field u = -(a grad p + bp) in L2(fl) ...

متن کامل

Global existence and uniqueness for the Lake equations with vanishing topography : elliptic estimates for degenerate equations

This paper deals with global existence and uniqueness for the lake equations with a bottom topography vanishing on the shore. Our result generalizes previous studies that assumed the depth to be nondegenerate. Elliptic estimates for degenerate equations are established studying the behavior of the associated Green function.

متن کامل

Global gradient estimates for degenerate parabolic equations in nonsmooth domains

Abstract. This paper studies the global regularity theory for degenerate nonlinear parabolic partial differential equations. Our objective is to show that weak solutions belong to a higher Sobolev space than assumed a priori if the complement of the domain satisfies a capacity density condition and if the boundary values are sufficiently smooth. Moreover, we derive integrability estimates for t...

متن کامل

Global Parametrices and Dispersive Estimates for Variable Coefficient Wave Equations

In this article we consider variable coefficient time dependent wave equations in R×R. Using phase space methods we construct outgoing parametrices and prove Strichartz type estimates globally in time. This is done in the context of C metrics which satisfy a weak asymptotic flatness condition at infinity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Partial Differential Equations

سال: 2021

ISSN: ['1532-4133', '0360-5302']

DOI: https://doi.org/10.1080/03605302.2021.1920615